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The work performed under NASA grant NGR-33-018-014 covered a wide range of 

subjects  which are coupled  by the  common theme of dual   control .  Dual 

control  i s  t h e  problem of optimal control of a process  under  the  condition 

of incomplete  information.  Consequently,  the  problems of ident i f ica t ion ,  

adaptation, and s e n s i t i v i t y  of  optimal  control  systems w e r e  investigated.  

The f i n a l  r e p o r t   f o r   t h i s   g r a n t  was  divided  into  f ive  separate   reports .  

The four other   reports   are  as follows: 

Error  Correcting  Learning Models (N68-23599 - NASA CR-94583) 

S e n s i t i v i t y  Design  Technique (N68-19267 - NASA CR-93527) 

Bending  Frequency  Identification  (Saturn  Booster) 
With a D i g i t a l  Coherent Memory F i l t e r  (N67-39228 - CR-89319) 

Pulse Rate  Adaptive  Threshold  Logic U n i t s  (NASA CR-1035)  

iii 



Adaptive S h n l a t i o n  Using Modal Clustering 

Formulation of Problem 

The subjec t   o f   th i s   repor t  is the  formulation of an input-output  process 

model using only the  process  operating  record. The processes  considered are 

those which  have a f i n i t e   s e t t l i n g   t i m e .  Other  than a knowledge of t he  pro- 

cess se t t l ing   t ime and the  process  operating  record, no other  information i s  

available. The s t ruc tu re  of the process i s  not known, thus nonlinear  and 

l inear   processes  f a l l  within  the class of processes  studied. 

Since  the  process structure i s  unknown, the re  i s  no procedure  for  obtain- 

ing  the  process  parameters  and the process  nonlinearit ies ( i f  any). Conse- 

quently,  an exact model of the process  cannot be obtained. However, an 

input-output model can  be  obtained,'  such that given a par t icu lar   input  the 

process  output  can be found. A model of this   type  can be seasched i n  fast 

time f o r   u s e   i n  a predictive  control  system. 2 

In   addi t ion ,  it i s  desirable that such a model be able   to   adapt   to   process  

changes.  Since the process parameters are not  monitored,  the  overall  cause- 

effect r e l a t ionsh ip  of the model must change, based on ly  on the on-line 

operating  record  of the process. 

Another  viewpoint,  and one which will be taken i n  th i s  report ,  i s  t h a t  

what is ac tua l ly  desired i s  an inverse model, one which portrays the output- 

input   re la t ionship  of  the process. A model of t h i s  type can be searched i n  

fast time to  obtain  the  input   information  required  to   guide the process  through 

a desired  output  path. 
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I n  summary, t h e  model  which i s  obtained  protrays  the  output-input  causal 

re la t ionship   o f  a process   wi th   f in i te   se t t l ing   t ime.  It i s  assumed that the  

only  information which i s  available is the  process   set t l ing  t ime and t h e  

normal  process  operating  record.  Consequently,  the  identification i s  on-line 

with  the model adapting t o  process  changes. 

Process   Ident i f icat ion and Pattern  Recognition " - 

The problem  of  modeling a f i n i t e   s e t t l i n g  time process on an  input-output 

( o r  output-input ) basis can be viewed as a problem in   pa t te rn   recogni t ion .  If 

the  sett l ing  t ime  of  the  process i s  Ts, then the input x(T)  from 27 = t - 
t o  2, = t uniquely  determines  the  output  y(t) a t  time t . The input  can 

be viewed as a two dimensional  pattern on an  amplitude-time  coordinate  system. 

Alternatively,  if the input i s  sampled a t  N points  during the process   set t l ing 

Z S  

t ime  then  the  input  can be represented  by a point  in  Euclidean N-dimensional 

pattern  space.  The output  y( t )  can  be  viewed as a po in t   i n  one dimensional 

space, the real  l i n e .  Thus, the  process  represents a transformation o r  

mapping from t h e  N-dimensiooal  input pa t te rn   space   on to   the   rea l   l ine .  For 

a l inear   process   the  t ransformation is  l i n e a r ,   f o r  a nonlinear  process the 

transformation i s  nonlinear.   Pattern  recognition i s  the  process whereby a 

poin t   in   pa t te rn   space  i s  mapped onto a d i s c r e t e  axis of categories .  For 

example, many handwritten 2's a r e  mapped i n t o  a s ingle   point  "2" on the 

category ax is .  Similarly, many process  input  patterns  can be mapped i n t o  a 

unique  y( t ) on the real  ax is .  If the  process  output  y( t ) is  quantized 

i n t o  R output levels, then  the mapping is  onto a discrete   category  axis  of 

R categories .  The problem  of pat tern  recogni t ion and  of  process  identifi- 

cat ion i s  t o  determine  the  transformation  process whereby input   pat terns   are  

2 



mapped onto  the  category axis. Furthermore,  process  identification seeks t o  

determine  the  inverse  transformation whereby a given  output  point  can be 

mapped i n t o  many input  patterns.  

Since the art of pat tern  recogni t ion has progressed t o   t h e   s t a g e  where 

it i s  a usable   tool ,  it seems na tu ra l   t o   app ly  these techniques t o  the problem 

of  process  identification.  Pattern  recognition  represents a par t iculaxly 

useful  and  powerful  technique  in the area of control  systems. The control  

f i e l d  is  just   real iz ing  the  importance of t h i s  approach,  and invest igat ions 

are presently  being  undertaken  in  the  application of pa t te rn   recogni t ion   to  

decision making control  systems. 3,4 

Category  Determination 

A convenient way of handling the input  past i s  represent it i n  terms of 

an  orthonormal  expansion. A pa r t i cu la r ly   u se fu l  set of orthonormal  f'unctions 

are the cardinal  functions.  The use of these functions  enables the inpu t   t o  

be represented  in  terms of t he  sample values of the input x( t ), x( t - T ) ,  . . . 
x E - (n-l)T]; (n-l)T = T S . Thus, 

n 

i=1 

where xi( t ) = x( t - ( i - 1 ) T )  

Consequently, the input  past  from t - Ts t o  t can  be  viewed as a 

point ( o r  v e c t o r )   i n  an n  dimensional  orthogonal  coordinate  space. This space 

i s  ca l led   pa t te rn   space .  Each  coordinate in   pat tern  space  represents  a 
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d i f f e r e n t  time sample of the  input.   This  vector-  can be written as 

where 

xi(t) = x( t  - ( i -1)T)  

- X( t ) = input   pa t te rn  

Since  the  input   pat tern 5 represents  the  time  samples of x( t ) during 

the   input  past, th i s   r ep resen ta t ion  remains  unchanged  between time samples. 

Consequently, the  output of the  process model remains  unchanged  between time 

samples. Hence the  output of the  process model looks l i k e  a series of steps,  

changing in   value  only at t h e  sampling  times. The height o f  t h e   s t e p  at each 

sample time i s  determined on t h e  basis of minimLun  mean square  distance  between 

the  output of the process  and  the  output of t he  model. 

L e t  (Z  . /X.  ) = output of t h e  model given  the  par t icular   input   vector  X . .  
J -J -J 

During the  t ime that X i s  present Z i s  a constant.  -3 j 
y( t ) = process  output 

The  mean square  distance between the  process  output and the model output i s  

given by 
- 
D2 = ( y ( t )  - Z./X.)* = y 2 ( t )  - 2 ( y ( t )  Zj/gj) + (Zj /xj) 2 

J -J ( 2  1 

This distance is  a minimum  when 

or 

(z . /x . )  = E m 7 q - l  
J -J 
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output when t h e  particular input  pattern  appears.   Since the output of t h e  

model i s  l i m i t e d   t o  R categories,  the  correct  category is chosen  by  finding 

the  quant izat ion level of t h e  average process  output. 

R = correct  model category = &R 
j 

where 

&R = quantization  operator of R quantization levels 

Mode Learning Machine 

The preceding  section  described the procedure  whereby a given  input 

pa t t e rn  i s  assigned t o  a particular  category.  This i s  only  past of t he  problem, 

equivalent t o  observing a list of pat terns  and the i r   cor rec t   ca tegor iza t ion .  

It would be inconceivable to   cons t ruc t  a model which l i s t e d  a l l  possible  input 

pat terns  and their associated  categories.  Consequently, some form of decision 

surface between pa t te rns   in   pa t te rn   space  must be constructed. These surfaces 

divide  pattern  space  into  regions  such that known samples i n  a category are 

enclosed  within a surface or region,  and all other samples  ase  excluded from 

this   region.   Theoret ical ly ,   these  surfaces   can be constructed i f  the con- 

di t ional   probabi l i ty   densi ty   funct ions of each  category are known. Using 

dec is ion   theore t ic  methods, the correct  categories are then  chosen on the  

basis of l i ke l ihood   r a t io s  .5 Complicating the problem  of  constructing  these 

surfaces is  the  requirement that the machine  must l e a r n   i n  real time. 

Consequently, ana ly t i c  methods of determining  these surfaces are out of 

the  question. The computations  and memory capacity  required are too   grea t  

t o  consider a true likelihood  computer.  Analytic methods f o r  approximating 

the  condi t ional   probabi l i ty   densi t ies  are available, however invest igat ion 
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has shown that the  learning  and  computation  time required preclude  even  these 

analytic approximations.  Therefore  nonanalytic methods  must be used t o  

obtain  these  separating surfaces. These surfaces must be obtained  in  r e d  

time, using  each new pa t t e rn  sample to   co r rec t   t he   shape  of the surface.  This 

requirement  requires a compromise between the   des i red   dec is ion   theore t ic  

approach  and the  pract ical   considerat ions of simplicity  and  computational  speed. 

6 

Since  the class of processes  include  both  linear  and  nonlinear  processes, 

certain  simple  techniques  such as l inear   decis ion  funct ions o r  m l t i l a y e r e d  

linear  decision  f 'unctions  cannot  be employed. However, t h e   c l a s s  of pat tern 

recognition machines known as "modal  machines"  can  be  employed. It w i l l  now 

be shown t h a t  machines i n   t h i s   c l a s s  approach  the  desired  l ikelihood computers, 

yet   maintain  the  advantages of s implici ty  and  computational ease. 

Consider  the  case of  two category  pattern  recognition. A minimum distance 

classifier would assign a category t o   t h e   i n p u t   p a t t e r n  based upon i t s  proximity 

t o   t h e   n e a r e s t  known  member of a c l a s s .  The locus of points   equidis tant  from 

the  nearest  members of t h e  two classes forms the  decision  boundary. This is  

shown i n  Fig-ure 1. The decision rule i s  then 

- X = input   pa t te rn  

Note t h a t   t h i s  procedure i s  valid no matter what the  shapes of the  regions 

which  contain  samples. Thus, c l a s s i f i c a t i o n  is  possible when samples of a 

given class occupy several dis jointed  regions,  as shown in  Figure 1. If the  
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class   separat ion would not be possible.  

This  classification  procedure  has  certain  shortcomings.  The most serious 

of these shortcomings i s  the s e n s i t i v i t y   t o   s t r a y  class samples. A s t r ay  

sample (due  p0ssib.u t o  a noisy  measurement) fa l l ing  within  an  incorrect   c lass  

boundary  can  cause numerous c l a s s i f i ca t ion   e r ro r s .  Consequently, it i s  

advantageous t o  modify t h i s  procedure such that, instead of looking  for the 

sample nearest   the   input   pat tern  point ,  a loca l   major i ty   ru le  is  used. A 

local  majority  decision  procedure first examines all samples within a radius 

r of the  input   pat tern and counts the number of  samples  of  each  category 

that l i e  within t h i s  radius .  The correct  category is chosen t o  be t h a t  

category which has the maximum number of samples  within th i s   r ad ius .  Essen- 

t i a l l y ,  this procedure i s  measuring local   condi t ional   probabi l i ty ,  and i s  

sometimes r e f e r r e d   t o  as the   F ix  and Hodges procedure.7 A modification of 

this  procedure,5 which weights  the  distance  from  the  pattern  to the s tored 

samples, is given by 

g . (x> = discriminant  function of ith category. 
1 -  

L- 

where 
N .  = number of samples of category i within a radius  
1 

r of pa t te rn  - X 

-xim = mth sample of category i 

k = exponent  which  determines how pattern mismatches are 
weighted.  Effectively k determines  the  slope  of a 

f i l t e r  about  the  point ,X 

7 
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The ca tegory   to  which pa t t e rn  - X is c l a s s i f i e d  is that   category  with  the 

largest   d iscr iminant   funct ion.   Since  this   procedure i s  a form of a weighted 

l ikel ihood computer, decisions  rendered by such a technique  approach Bayes 

decisions.  

Unfortunately,   this  technique suffers from the  disadvantage that it 

requi res   the   s torage  of t he   en t i r e   l ea rn ing  or sample s e t .  A reduct ion  in  

the  storage  requirements  can be accomplished i f ,  instead of t he   en t i r e  sample 

set being  stored,  certain  "representative"  samples were s tored.  These repre- 

sentative  samples  can be obtained by c lus te r ing   the   po in ts  i n  t he  sample s e t .  

The center  of  each c l u s t e r  i s  the  best approximate for   that   populat ion of 

sample poin ts .  If a new pat tern  point  i s  received  which i s  within a ce r t a in  

dis tance of the  representat ive  point ,   then it i s  assigned t o  t h a t   c l u s t e r  

and the  representative  point  modified.   Figure 2 shows how a given sample 

s e t  i s  approximated by a union of c i r c l e s .  The region i s  then  approximated 

by the  center   of   the   c i rc les ,   wi th  a weighting  factor which indicates  how 

many samples  were  contained  in  the  cluster.  These  clusters  can be  termed 

ttmdestt of a given  category. The use of these modes eases  the  storage  re- 

quirements  and  simplifies  the  computational problems, since  only  the modes 

a re  stored and  compared with  the  input   pat tern.  A machine  which c lus t e r s  

the  input  patterns  and  uses  only modal information t o  e f fec t   dec is ion  making 

i s  hown as a "modal  machine". 

Decision Making 

The bas ic   dec is ion   to  be made is "given  the  input  pattern - X, which 

category Ri i s  most l i ke ly" .  This can  be  transformed  into  an  examination 

of the   condi t iona l   p robabi l i ty   d i s t r ibu t ion  P( Ri/s). Using the  modal 
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approximation of the  category  regions, 

where 

Mi = number of modes of category i 
\ 

R = jth m o d e  of category i 
i j  

PR (X) = condi t ional   probabi l i ty   densi ty  of mode 
i j  

Rij 

Since P(X) - is  comon for aLL categories,  category  decisions  can be 

made by  comparing 

where 

Nij = umber of samples i n  mode Rij 

The probabi l i ty   densi ty   funct ion PR (5) i s  not known, but it can be approx- 
2: 
LJ 

imated by a lmowledge of the clustering  procedure. The c i r c l e s  shown i n  

Figure 2 are assumed t o  be equiprobable  contours of Gaussian  processes which 

have equal   var iances   in  a l l  dimensions  and  uncorrelated  variables. The 

probabi l i ty   densi ty  (5) i s  then  given by 
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where 

N = number of dimensions 

r2 = variance of   the mode 

-Pij = m e a n  of t he  mode, r e f e r r e d   t o  as the  prototype  point  

of t h e  mode 

Notice   that  i f  the  input   pat tern - X is  c l o s e   t o  a prototype  point, all 

but a f e w  terms vanish   in  Eq. (9) .  Thus, Eq.  (8) is  a measure of the number 

of  samples  of  category i which are near - X, weighted  according t o   t h e i r  

distances from 2. Hence, t h i s   t y p e  of decision  approximates  l ikelihood  ratio 

decisions.  

Alternatively,  for  the  assumptions made i n  Eq. ( g ) ,  a simpler type of 
* 

6 decision making can be used.  This  decision  procedure i s  a minimum distance 

classif icat ion  based upon d is tances   to   the   p ro to type   po in ts .  The basis for 

t h i s   dec i s ion  making i s  to   f i nd   t ha t   ca t egory   fo r  which 

(x - P. . )  (x - P. .)  T 
- -lJ - -lJ 

is a minimum. 

Expanding th i s   d i s t ance  measure 

(x - P. . )  (x - P. .) =_x - _x - 2 gij - T 
- -lJ - -lJ . 

EquivaLently,  the minimum dis tance   c lass i f ica t ion   wi th in  a given  category  can 

be performed by  compasing the  sub-discriminant  f’unctions 

M. = number of modes in   category i 
1 

j = 1, 2, ..., Mi 

* 
The additional  assumption, which may be  implied  from  the  other  assumptions, i s  

that   the   populat ion of each mode is equal.  This  assumption i s  not   requi red   for   th i s  

procedure ,   bu t   i l lus t ra tes   tha t   dec is ions  made by both methods  can  be made ident ica l .  
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The largest   sub-discriminant  function  corresponds  to the m o d e  (within.category 

i) which i s  c l o s e s t   t o   p a t t e r n  - X. The correct  category i s  obtained by cam- 

paring the discr iminat   funct ions 

gi(_x) = = i = 1, 2, ..., R (11) 
j=1,2, . . .Mi 

and se l ec t ing  the l a r g e s t .  The l a r g e s t  of the R discriminant  f’unctions i s  

associated  with the correct  category. A simplified  block  diagram  of  this type 

of  learning machine  model i s  shown i n  Figure 3. 

kdaptive Modal Construction 

The problem  of  on-line  construction of the modes (prototypes) of  each 

category i s  handled i n  the following manner. The f i rs t  pattern  received be- 

longing t o  a par t icular   category i s  assigned as the f irst  mode of that  

category  and  given a weight  of  one. The second pattern  received  belonging t o  

that category i s  tested t o  see i f  it l ies  within a given  radius  (distance)  of 

the first pat tern.  If it does,  then it i s  clustered w i t h  that  pa t t e rn  by 

averaging,  and a weight  of two i s  assigned  to   the  averaged  pat tern.  If the 

second pa t t e rn  falls outside  of the given  radius,  then it i s  assigned as the 

second mode of that category.  Successive  patterns are t r e a t e d   i n  the same 

manner, c lus t e r ing  the pat terns   within a given  radius so that the prototype 

pa t t e rn  (mode) represents  the center  of gravity  of the clustered  pat terns .  

The distance between  each mode and t h e  new pat tern must be found t o  determine 

whether t h e  new pattern  should be clustered, and  with which m o d e  it i s  t o  be 

clustered.  

11 



Given a memory which  can  store M modes, the  assignment of t h e  

number of modes for  each  category raises an i n t e re s t ing   po in t .  The simplest 

solut ion would be t o  preassign t o  each  category 5 modes, where R is  t h e  

number of  categories. However, t h i s  assumption of uniform modal d i s t r ibu t ion  

i s  generally  not valid, although it may produce  acceptable  error rates. 

Idea l ly ,   the  number of  modes assigned t o  each  category  should be chosen  based 

upon t h e   d i s t r i b u t i o n  of  patterns  in  each  category.  Since  the modal d i s t r i -  

bution i s  unknown, the  assignment of modes must be made on an  adaptive basis. 

One procedure  would be to   a s s ign   t he  incoming p a t t e r n s   t o  the i r  respective 

categories,  tagging  each mode with  the  correct  category. This procedure would 

cont inue  unt i l   the   a l lowed memory space was f i l l e d .   I n   a d d i t i o n ,  a minimum 

number of modes could  be  assigned t o  each  category. 

R 

The p r inc ipa l  problem arises when the memory i s  f i l l e d .  How should the 

M + 1st pattern  be  handled if  it i s  not   within  the  c luster ing  radius? Con- 

ceivably, i f  t h i s   p a t t e r n  i s  averaged  with the nearest  mode i n   t h e  same 

category.   Al ternat ively,   the   resul tant  mode might move the   o r ig ina l  mode 

away from the   des i red  surface and  c loser   to   the  inside of the  category  region. 

Therefore, once the memory i s  f i l led,   averaging modes t o  a l low  for  more  memory 

space  should be approached  with  considerable  care. The  new  mode must be 

tested t o  see i f  it l ies  within the given  category,  and if it l i e s  outside 

the  c luster ing  radius   of  any other  mode. This  testing  of  averaged modes 

requires a good deal   of  computer time, and  the  additional  refinement of the 

separating  surfaces must be weighed against   the  cost   of  the  refinement.  If 

t h e   i n i t i a l  M modes fair ly   adequately  represent   the  category  surfaces ,  

res t r ic t ing  the  learning  procedure t o  averaging on ly  within  the mode cluster ing 
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radius may be the best possible  procedure.  Additional  input  patterns  which 

l i e  outside  of  any  clustering  radius are considered as s t r ay   pa t t e rns  and 

are discarded. 

There are several other  ways i n  which clustering  can be achieved, 5 ,  7 

however this study used the simplest  techniques, t o   eva lua te  the orders of 

magnitude  achievable  by  use of a learning machine. A flaw diagram  of the 

simple  uniform  clustering  procedure is  shown in   F igure  4. 

The s i m i l a r i t y  between t h i s  method and t h e  method of Potential   Functions 899 

should be noted. The method of  Potential  Functions  can be viewed as either 

a generalization of a 3 machine“ or as a generalization of a modal machine. 

I n  fact, Aizerman8” gives two learning  algorithms, one f o r  each  viewpoint 

or learning machine s t ruc tu re .  The convergence  proofs f o r  these algorithms 

are also  given.  Consequently, the method used in   t h i s   r epor t   can  be con- 

s i d e r e d   t o  be a special   case of t h e  method of  Potential  Functions. 

Since  the  purpose of t h i s  report  is  t o   i l l u s t r a t e  how pat tern  recogni t ion 

techniques  can be used for process  identification, a convergence  proof f o r  

t h i s  pa r t i cu la r  form  of learning machine i s  not  included. Convergence is  

assured by the convergence of the  general   case.  A similar study of  process 

ident i f ica t ion   us ing  the general  form of the  Potential  Function  forms the 

second  half of t h i s   r e p o r t .  

Test Results 

The modal learning  technique was  app l i ed   t o  a wide range of  systems,  both 

l i n e a r  and  nonlinear. The more important results and  implications will be 

reported  here, with the plant  of  Figure 5 used as an example. The i n p t   t o  

13 



the   p lan t  was exponent ia l ly   correlated (e = .TOT), zero mean, Gaussian  noise. 

The inpu t   pa t t e rn   t o   t he  model consisted  of  ten sample points,  taken  over a 

f i v e  second s e t t l i n g  time, unless otherwise  noted.  Results are l i s t e d   i n  

Tables I-IV. A typical   output  is shown in   F ig .  6. 

I. Uniform Prototype Model 

The uniform  prototype model sets aside an equal number of prototypes fo r  

each  quantization  category. The results of u s ing   t h i s   t ype  of model indicated 

t h a t  : 

1. For 6 = 0.5 and 40 quant izat ion  levels ,   there  i s  very l i t t l e  

difference between us ing   f ive  a d  ten  prototypes per quantization 

category. There i s  also  very l i t t l e  difference between center of 

grav i ty   c lus te r ing  and  non-center of grav i ty   c lus te r ing .  The rms 

error   over  100 s e t t l i n g  times varied between .O3O and .039. The 

lower e r r o r  ms obtained  for 10 prototypes,  center  of  gravity 

c lus te r ing  and a tolerance  (radius  about  each  prototype) of 2.0.  

Since a quant izat ion  interval  was .@5, t h i s  can be considered t o  

be good ident i f ica t ion ,   the  model output  being  sl ightly  higher  than 

one quant izat ion  interval .  

2 .  The identification  t ime,  al though  not shown i n  the tables, appeared 

t o  be within 10 settling times of the  system. This is not  an 

adequate measure s ince   ident i f ica t ion  time i n  such a system i s  a 

function of t he   deg ree   t o  which the  input  probes the  allowed  pattern 

space.  Consequently  the  identification i s  a function of the  input 

s t a t i s t i c s .  For t he  zero mean Gaussian  noise  the  exponential 

14 



cor re l a t ion  ( = .TOT) provides what i s  seemingly  rapid  identifi-  

cation.  This  apparently good iden t i f i ca t ion  is caused  by t h e  fact 

t h a t   t h e  last input   pa t te rn  i s  c lose ly   r e l a t ed   t o   t he   p re sen t   i npu t  

pattern.  Consequently  the  present  output will be c lose ly   re la ted  

t o  the previous  correctly  tagged  input.  If the  input  were purely 

random, jumping throughout  pattern  space, this would not be the  

case. The use of exponentially  correlated  noise i s  j u s t i f i e d  on 

t h e  basis of a c lose r  match with actual   s ignal   condi t ions.  

3. When the input  variance is  increased t o  0.75 t h e  mean squase e r r o r  

increased markedly. Increasing the number of categories  and  in- 

creasing the number of   taps   decreased  the  error  by  about  one-half. 

The principle  fault i n  these tests was that the output  range was not 

correspondingly  increased  with the input  variance.  Clearly,  changing 

the  input  variance will change the output dynamic range. This w a s  

not   accounted  for   in  these tests. However t h i s  does  point  out the 

shortcoming  of t h i s  type of   ident i f ica t ion .  For a nonlinear  system 

the   en t i re   pa t te rn   space  must be probed,  which requires a greak deal  

of  computer time. Equivalently,   an  increase  in  the  input  variance 

corresponds t o  a decrease  in  the number of  categories or fineness of 

i den t i f i ca t ion .  

4. Use of a non-zero  tolerance  (radius of c luster ing)   factor   reduces 

t h e   e r r o r .  There i s  851 optimum cluster ing  radius  beyond  which the 

er ror   increases .  However t h i s  i s  not a sharply  defined radius, as 

the   e r ror   increases   s lowly  after the optimum radius i s  exceeded. 

15 



11. Nonunifom Mode Distributi.on 

This d i s t r i b u t i o n  is determined  by the  manner i n  which the  input   pat terns  

axe sequent ia l ly  allocated t o  each  category. A minimum,of two prototypes  per 

category are allowed,  otherwise  the number of  prototypes  per  category are 

determined  by  the actual d i s t r ibu t ion .  

1. For 0- = 0.50 there   appears   to  be a th re sho ld   e f f ec t   i n   t he  number 

of  categories  selected.  Above 50 categories  (below q = . W )  there 

i s  not  any  noticeable  decrease  in  the MSE. I n  one case  an  exponential 

"forgett ing"  function was applied t o   t h e   i n p u t ,  and in  another  case 

the  input  was quantized.  There  did  not  appear t o  be any noticeable 

changes f o r   t h e s e  cases. Iden t i f i ca t ion  w a s  within 2 quantization 

levels. 

2. For 6 = 0.75 t h e r e  was a decrease  in  MSE for   an   increase   in   the  

number of  prototypes,  but  not a s ign i f i can t  decrease. Consequently 

most of t h e  tests were made with the lower number  of prototypes. 

In te res t ing   the   ou tput  range was varied from 1 t o  10 without any 

s igni f icant   d i f fe rence  i n  t he  MSE . 
3. Again, t he re  i s  a combination of tolerance,  range,  and number of 

prototypes  which  yields a minimum MSE. There i s  a l s o  a unique  value 

of  system s e t t l i n g  time which gives a minimum MSE. The order of 

magnitude  of t h e  MSE i s  l a rge ly  a f'unction of the  input  variance.  

The input  variance  describes  the  space  over which the input  patterns 

occur ,   the   larger  the variance  the  greater  the  nonlinear  range which 

must be described  by a f ixed number of  prototypes. 

4. It i s  indeed   in te res t ing   to   no te  that  t h e  nonuniform d i s t r ibu t ion  w a s  

not any more successful   than  the  uniform  dis t r ibut ion.  The reason 

f o r   t h i s  i s  described  in  the  Conclusions  Section. 
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Conclusions 

The purpose of t h i s   s tudy  w a s  t o  determine  the  usefulness of mode seeking 

pat tern  recogni t ion  techniques  in   obtaining  adapt ive models of  nonlinear 

processes. This study has shown that such a simulation  can be successful. 

However the  specific form of t h i s   t y p e  of solut ion maps the  ent i re   input   space 

by a set of   c lustered  input   points ,   each  c luster   belonging  to   an  output  

quantization level. A s  such,  not  only  the  boundaries  between  output levels 

are determined  but a l s o  the  ent i re   space  within the boundaries.  This i s  an 

ineff ic ient   use   of   the  memory al locat ion,  as i s  borne  out by the   increase   in  

MSE as the input  variance i s  increased. A more appropriate mode seeking 

technique would be one which cleared  the  inside of a region,  leaving  only 

those modes which are  required  to  determine the boundaries  between  output 

levels. This is  a much  more d i f f i c u l t  procedure  than  simply  storing and 

cluster ing the pat terns   belonging  to  a pa r t i cu la r   c l a s s .  However it should 

be possible  to  construct  such  boundaries  by  use of a polynomial  decision 

surface which axe derivable from the s tored   c lus te r   pa t te rns .  
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Uniform Mode Distr ibut ion 

Table I 

40 categories,  Range = 1.0, g = .025 
r = 0.5 
10 Time Points 

S e t t l i n g  Time = 5 seconds 

PROT/CAT 

5 
10 

10 

10 

No. CAT 

40 
80 
50 
50  
100 
100 

100 
100 
100 

100 

CLUST 

Non C.G 

Non C.G 

C .G 

C .G 

TOLERANCE 

0 

0 

0 

2 .o 

/1 
.030 

Table I1 

6 - z  0.75 Range = 1.0 

4 

-025 
.0125 
.02 
.02 
.01 
.01 

.01 

.01 
-01 

.01 

CLUST 

Non C.G 

C .G 

C .G 

Non C.G 

C .G 

C .G 

C .G 

C .G 

C .G 

C .G 

ST - 
5 
5 
5 
5 
5 
5 
5 
5 

10 

10 

W S  

10 
10 

10 

10 

10 

20 

20 

20 

20 

10 

TOL . 

0 

0 

0 

0 

0 

0 

2.0 

10 
0 

0 

MSE 

.164 

.203 

.103 

.148 

. lo6 
- Ogo 
,074 
.125 

.163 

.142 
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Nonuniform Mode Distr ibut ion 

Center of Gravity  Clustering 

Ten e q w  spaced  input time points  

Table I11 

c= 0.5 No. of Prototypes = 500 S e t t l i n g  Time = 5 sec. 

No. of Categories 

25 
50 
50 
75 
75 
100 

No. CAT 

100 

100 

100 
100 
100 

100 
100 
100 

100 

100 

25 
25 
25 
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1.0 

1.0 
1.0 
1.0 

” 
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10 

10 
1 
1 

10 

10 
1 
1 

1 

1 

3 
3 
3 

9 

0.1 
0.1 

- 

.01 

.01 
0.1 
0.1 
.01 
.01 

.01 

.01 
0.120 

0.120 

0.120 

9 

0.4 
.a2 
.02 
.013 
.013 
.01 

Tolerance 

1.0 

1 .0  

0.66 
0.66 
0.66 
1.0 

Table IV 

Settl ing Time 

5 
5 
5 
5 
5 
5 
7 

10 

3 

” 
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.01 

.01 

1.0  

1.0 

1 .0  

5 - 0  

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 
1.0 

Comments 

Forgetting 

Input  quantized 

MSE - 
.189 
.162 
-209 
.2@ 

.141 

.274 

.241 

.304 

.113 

.150 
* 139 
.130 
.146 

” 

1 

I 
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Increased No. Prot 

Decreased Range 

Increased  Tol. 

Inqreased  Sett l ing 

Decreased Se t t l i ng  
Time 

Time 

Forgetting 

Juantized  Input 
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ADAPTIVE  SIMULATION BY 

THE  METHOD OF POTENTIAL  FUNCTIONS 

Introduction 

The  Method of Potential  Functions  was first announced by Aizerman 

" et  a1 in 1964, and elaborated on by these  same  investigators in 

two subsequent  papers, ( 1 ,  2, 3). Several Russian  investigators 

have  applied  the  method to some optical character  recognition 

problems (4, 5, 8, 12), but no work  seems to have been done on 

applying  the  method to the problem  of  adaptive  simulations. In the 

discussion to follow, and in the investigations reported in a 

following  section  only  the  basic  algorithm is considered. 

The  chief  value of the  Method  of Potential Functions is two- 

fold. 

1.  

2.  

I t  represents  per  se an algorithm  which may be  of  consider- 

able  value in pattern  recognition  problems; 

I t  demonstrates an analogy between modal learning  tech- 

n i ques  and $ -machine techni ques which general i ze many of 

the  results for learning in 1 inear machines to modal machines. 

The  Method of Potential  Functions will now be discussed.  First, 

a general description  of  the  method will be presented,  followed by 

the  method of realizing  the  algorithm. Next Aizerman's  proof  of 

the  convergence of the  algorithm for the two  category  case will be 

extended to R categories. 
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Consider an M-dimensional pa t te rn  space X .  Without  loss  of 

genera l i t y ,   t h i s  space may be assumed t o  be Eucl id ian;  and hence, 

t o  possess a metr ic ,  an inner  product, and, i n  general, a i l  prop- 

er t ies  assoc iated wi th  a Euc l id ian  space. I n  p a r t i c u l a r ,  i f  ;; I; X 

i s  a v e c t o r   i n  X ,  then one may def ine an orthonormal  set o f   sca la r  

funct ions E+i (;I, 1=1,2,3,---]. 

Now suppose X i s   p a r t i t i o n e d   i n t o  two d i s jo in t   ca tegory  sub- 

sets, X and X*. Then the  discriminant  functiony(;;) may be 

represented  by a general 

A 

The p r i n c i p l e  assumption o f  the method o f   po ten t i a l   f unc t i ons  

i s   t h a t   t h i s   i n f i n i t e  SUR) may be adaquately  represented by a 

f i n i t e  sum. N 

L 
i 3 1  

Some i n t u i t i v e   j u s t i f i c a t i o n   o f   t h e   p r i n c i p l e  assumption i s  

required. We note  that  i t  o f ten  happens tha t   i n   t he   f unc t i ons   o f  

physics, a truncated  Fourier  series may approximate  closely  the 

or ig ina l   func t ion ,  perhaps w i t h  some llr ipplell.  In  general,  the 

separating  surface  is  not  necessari ly  unique; hence, we  may 

consider  the  Truncated  Fourier  Series to be some "r ippled"  approxi- 

mat ion  to some "optimum" separating  surface. 

The work o f  Cooper ( 6 )  and Sebestyan  (10) are o f  p a r t i c u l a r  

in te res t .  Cooper shows that  quadr ic and l inear   sur faces  are  a l -  

ready optimum f o r  a w ide   c lass   o f   p robab i l i t y   d is t r ibu t ions .  For 

example, Cooper shows that   the  hyperp lane  is   opt imal   for  "two 

untmoda\ d i s t r i b u t i o n s   d i f f e r i n g  only i n  l oca t i on  and having 
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probabi 1 i t y   dens i ty   func t ions   wh ich   a re   e l  1 i p s o i d a l   l y   s y m e t r i c  

and monotonically  decreasing away from the mean ";while  the  hyper- 

sphere i s  optimal when the two d is t r ibu t ions   a re   "spher ica l l y  

symetric normal wi th di f ferent  var iancestt .  The implications  here 

are   no t   tha t   these  s ta t i s t i cs  may be known a p r i o r i ,   f o r  i f  they 

were, parametric  procedures  would be f a r  more appropriate.  Rather, 

t h e   p o i n t   i s   t h a t  one might be j u s t i f i e d   i n   t a k i n g  a small number 

o f  terms i n  any real  physical  problem.  This  is  further  supported 

by  Sebestyan's  resul  ts, c i   t e d  above, page 68ff. 

Consider a mapping o f  H-dimensional space X i n  some N-dimensional 

space 2 def ined as f o l  laws: l e t  3; = (%,-----,x ) be a p o i n t   i n  X. 

Then the image 5 2 o f  x i s   g i ven  by: 

m 

zi pi ( X ) ,  1-1 ,----,N (4) 

and r = (z1 ,----,z,,). Hence the  reparafing  surface  given by (1)  may 

be roen to map l n t o  a hyperplane In  2.  
N 

2 i s  termed the  L inear izat ion Space o f  x.  

Hence, f o r  N such tha t  (2)  holds, (2) and (4) map an a r b i t r a r y  

separating  surface \k i n  pa t te rn  space i n t o  a 1 inear  separating 

surface i n  2. Let /=  (6  ,----,/N) ba the  parameters of  the  separat- 

ing  hyperplane i w Z .  Then i f  8 Z Is fhe image o f  X ,  the  dichot- 

- 
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- 1  

i s  expressed  by a co r re la t i on  

9 ( 4  = j3 ( <o, - 2  S ZB 

The Potent ia l   Funct ion 

Let  x, y SX and l e t  u, v 8 Z be the images o f  2 and 7 under  the 
" " 

mapping (4). Def ine  the  potent ia l   funct ion K (x',;). 

It i s   c lea r   t ha t   t he   po ten t i a l   f unc t i bn  i s  the image i n  X o f  the 

co r re la t i on  (i, y )  i n  2 .  The basic  idea  of  the method o f   p o t e n t i a l  

funct ions  is  that   the  separat ing  hyperplane 5; i n  l i n e a r i z a t i o n  space 

can be approximated i n  terms o f  a po ten t ia l   func t ion  i n  pa t te rn  space. 

Prototype  points  are  learned by the machine, and these  prototype  points 

serve as the  representations i n  pa t te rn  space of  the  parameters 4,---- 
t N. 

A1 qor i thm 

F i r s t  Method 

The po ten t ia l   func t ion  K (T, 7) i s  chosen. For example, two l i k e l y  

functions  are  of  the  form A4 + B - y l l y a n d  A exp. ( -B l l ky l12)  where 

11 11 ind.icates  the norm def ined on X-space. As a pract ical   matter,   the 

norm may be taken t o  be  Eucl  idean  dl  stance. 

The a lgor i thm  ( f i rs t   methd) is   de f ined  by   induc t ion ,  as fo l lows: 

the f i r s t   p o i n t  'ii appears  and the  potenti .81  function i s  def ined as 

30 



Now,  assume yr6) i s  defined. Let  the   po ln t  Xr+’ appear. Then 4 

cases ex i s t :  

b) sir+’ d x2,y rGr+i) < o 

c) X‘+l & XI T&X‘+l) < 0 

Kr+ 1: 61 i s   d e f i n e d  as 

a)  and b) i . ~ . ,  no e r r o r  

A f t e r  r steps,  the  potent ia l   funct ion may be w r i t t e n   i n   t h e  form 

K (r; ,?) ( 1  1)  

x &Xl  
S 

xq & x2 

The prime on the  sumnation means that  only  those (xs & X ) and 

Gq &X2)  are  taken  which caused the  preceding  potent ia l   funct ion  to 

be i n   e r r o r .  As a matter  of  terminology,  the  sets 6’ E X I )  and 

Gq E X2)  may be termed; respect ive ly ,   the  pos i t ive and negative  poles 

associated  with  category X I .  

1 

I t  i s   c l e a r   t h a t   i n   t h i s   a l g o r j t h m  these  poles must be stored 

during  the  learning  period. As r-+oo, the  funct ion yr(<) should 

converge to  the  separat ion  funct ion k (z), so that  as  learning  progresses, 

fewer poles w i  1 1  be ddded to storage. 



Equation (11)  may be restated more compactly i n  terms o f  the 

adjusted  t rafning  set  S A .  Let S c  = (yl, x2, , . ,) be the s e t  o f  

t ra in ing   pa t te rn   vec tors   wh ich  were m isc lass i f i ed  by the   po ten t ia l  

funct ion.  The Pole weictht factor  associated wi th member of  the  adjusted e 

- 
X .  

t ra in ing   se t  i s  denoted by o( and i s  defined as J 

Hence,d. -+ l   for   pos i t ive  po les,  and d = 4 1  for   negat ive  poles.  

Then equation ( 1 1 )  may be w r i t t e n  as: 
J j 

N 

j = 1  

The f i r s t   a l g o r i t h m  i s  then seen t o  be a modal technique,  with 

the  poles,  which  are seen t o  be the members of   the  ad justed  t ra in ing 

set SA,  corresponding to   p ro to type  po in ts .   Th is  number, Nr, cannot, i n  

general, be computed 2 p r i o r i .   T h i s  i s  a drawback i n  the method, since 

X 

c lear ly ,   the  amount o f  computer memory required  to  carry  out   the  a lgor i thm 

i s  d i rec t l y   p ropor t i ona l   t o  Nr. In  s imulat ion  exper iments  carr ied  out 

employing this  technique, methods a r b i t r a r i l y   c o n s t r a i n i n g  N were 

attempted, w i t h  general l y   s a t i s f a c t o r y   r e s u l t s .  

r 

Extension  of   the  Alqor i thm  to  the R-Cateqory Case. 

The Poten t ia l   Func t ion   Ident i f ie r  i s  proposed as an adaptive model 

fo r   non- l inear  systems. The pa t te rns   to  be c lass i f i ed   a re   se ts   o f  t ime  

samples of   the  input,   whi le  the  categor ies  are  def ined by quantizing  the 

output   s ignal   in to  R levels.  Several schemes for extending  the  algori thm 

are now suggested. 
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Absolute  learninq scheme. 

R potent ia l   funct ions  are  def ined.  Dur ing  learning, when x r4 1 Q 

( leve l  J )  appears, each f u n c t i o n q i  r+l (x r-1 ) i s   co r rec ted  so t ha t  

Dur ing  ident i f icat ion,  i f  convergence were complete, f o r  each-';; tha t  

appears, one and on ly  one o f   t he  R potential  functions  would be p o s i t i v e  

and a l l   o f  the  others  would be negative. The pos i t i ve   f unc t i on  would be 

selected as that  corresponding  to  the  desired  quantization  level.  As a 

matter of  prac t ice ,  such a condi t ion  could  not  i n  general be  expected. 

I n  the case  where several   potent ia l   funct ions were pos i t i ve ,   the  most 

reasonable  choice  might be the maximum. 

Maximum Learninq Scheme. 

I n   t h i s  technique, i t  i s  not   required  that   the  appropr iate  potent ia l  

func t ion  be p o s i t i v e   w h i l e   a l l   o t h e r s  be negative;  only  that  the 

appropr ia te  potent ia l   funct ion be greater  than any other.  Hence, 

dur ing  learn ing when x"! [ level j appears, the maximum po ten t i a l  

f unc t i on   i s   ca l cu la ted  

i - 1  , R  

Then i f  k=j ,   ( i .e. ,  no e r ro r ) ,  no correct ion i s  made, wh i le  i f  Mj, a 

p o s i t i v e   c o r r e c t i o n   i s  made f o r  9 and a negat ive .cor rec t ion   i s  made 

f o r  *k. A1 1 o ther   po ten t ia l   func t ions   a re   le f t   uncor rec ted .   In  terms 

of the  First  Algori thm,  the  assumption i s  t h a t   t h i s  will r e s u l t  in  fewer 

poles  being  stored.  Dur ing  ident i f icat ion,  when 3; appears,  the maximum 

2 (x) i s  selected as correspondlng to the  desi  red  category. 

j 
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One f i n a l  remark may be made concerning  both  the  absolute and 

maximum techniques. I f, dur ing   iden t i f i ca t ion ,  a po in t  3; appears 

such tha t  none o f  the g i ( x )   a r e   p o s i t i v e ,   t h i s   s i t u a t i o n  may be 

considered t o  be an e r r o r .   I n   t h i s  case,  no d e c i s i o n   i s  made, and 

the  last   est imate,   for   lack of any b e t t e r   c r i t e r i o n  i s  retained. 

Convergence o f  the  Algorithm. 

One o f  the  powerful  aspects  of  the Method of Potent ia l   Funct ions 

i s   t h a t  i t  i s  a highly  general  modal technique whose convergence 

propert ies  are  well   understood. The proof  of Aizerman e t  a1 i s  given 

fo r   t he  two category case. I t  i s  necessary t o  extend  th is   proof   to  

the  mult i -category case, I n  this  report,   Aizerman's Theorem Will be 

stated  wi thout  proof,   pr imari   ly   for   purposes  of   reference; 1 ikewise, 

theorems which  extend  the  result will be s tated and discussed  br ief ly;  

bu t  no r igorous  proof will be given. 

Aizerman's Theorem for the two category i s   s t a t e d  as  fo l lows: 

Thm. I n  pattern. space X ,  l e t  the  funct ion 9 6) , x & X separate x 

i n t o  two subsets, XA end XB such tha t  

- - 

and l e t  *(;) be representable  in  the form of equation  (2).  Let Sx 

be an a r b i t r a r y   i n f i n i t e  sequence o f   p o i n t s   i n  x, (zl ,x2,----x ----). 
- - 

k' 

Let  the  function  K(x,x) be bounded in x. 
" 

Then, there  ex is ts  some integer M , independent of  the  choice  of  

Sx, such that  the number o f   co r re la ted   e r ro rs  does not  exceed H. 

This   s ta tes   tha t   the   a lgor i thm converges i n  a f i n i  t e  number o f  

steps. However, i t  i s  no ted   tha t   th is  upper bound t4 i s   n o t  1 p r i o r i .  

calculable.  The i,mplIcations of  t h i s  ar,e discussed below. 
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Extension  to   the  Mul t i -Cateqory Case, 

Le t   t he re   be   de f i ned   i n   pa t te rn  space R subsets, XI,  Xz---- . xR 

Assume tha t   t hese   subse ts   a re   d i s jo in t ,  and de f ine   the   t ra i .n ing   se t  

X to be the  un ion of  these  category  subsets: 
R 

Then, R d i s t i n c t   d i s c r i m i n a n t   f u n c t i o n s  P i G ) ,  i=l,R are   de f ined 

and  each associated wi th one of the R category  sets. 

The c o n d i t i o n s  for s e p a r a b i l i t y  may  now be s ta ted   p rec ise ly :  The 

set  of category  subsets X ,----X are  separable  in  the  Absolute sense 

(or absolutely  separable)  by  the  funct ion  set  9, G),---- *rG) i f  and 

o n l y  i f  

1 R 

(15) 

( 0 ,  x s x  

The set  category  subsets XI  ,----,X a re   separab le   in   the  maximum sense r 

(maximally  separable) i f  and o n l y  i f  

9 6) 7 g i ~ ) ,  x E X i, j '1, ---- R ;  i + j  (16) 
- 

j' 

Now, i t  i s  c l e a r   t h a t  any se t   o f   ca tegor ies   wh ich  is abso lu te ly  

separable i s  necessar i ly   maximal ly  separable.  

Analogously,  these c r i t e r l a  can  be s t a t e d   i n   l i n e a r i z a t i o n  space. 

L e t  Z1,----,Zr be the mappings o f   t he   se ts  Xl,----X t" respect ive ly .  

Then, i f  y. is the  so lu t ion  weight   vector   corresponding to 

9 G), then  absolute  separabi 1 i t y   y i e l d s  

- 
J 
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and max i m a l   s e p a r a b i l i t y   y i e l d s  

These c o n d i t i o n s ,   o f   c o u r s e ,   r e p r e s e n t   l i n e a r   s e p a r a b i l i t y   i n  Z -space. 

Then the  extens ion o f  the  convergence proof through  the mu1 t i -  

ca tegory   f o l l ows   i n  a s t ra igh t - fo rward  manner. Rather  than  state  these 

r e s u l t s   f o r m a l l y  as  theorems,  the r e s u l t s  will simply  be  discussed. 

For  the  Absolute scheme, one  recognizes  that R ca tegor ies   a re   pa r t i t i oned  

by R-1 d isc r im inant   func t ions .  Hence, t h i s  method may be  thought o f  as 

R-1 2 -ca tegory   separa t i ons   ca r r i ed   ou t   i n   pa ra l l e l ,   acco rd ing  to equat ion 

(15). Hence, the   resu l t   fo l lows  imned ia te ly .  

For  the Maximum  scheme, the  convergence  result  is  extended  by 

n o t i n g   t h a t   i n   l i n e a r i z a t i o n  space, the  algori thm  reduces to f i xed-  

increment 1 inear   t ra in ing   p rocedure .  The N i  lsson-Kesler Theorem, 

(10, p. 87) may be  adapted d i rec t l y   t o   ex tend   t he   resu l t .   Fo r   de ta i l s ,  

see reference. 

S imu la t i on   o f   t he  Systems 

Three  systems  were  employed;  these  were a 2-dimensional system, a 

f i r s t   o r d e r   n o n l i n e a r  system, and a second order  system with saturat ion.  

These are  now described. 

Two-Dimensional  Delay  System 

The equat ion   fo r   the  Two-Dimensional  Delay  system i s  

y ( t )  = x ( t )  - x ( t -T) .  (19) 

T h i s   t r i v i a l  system was employed p r e c i s e l y   f o r   t h e  reason tha t   t he  

ou tpu t   i s   comp le te l y   spec i f i ed  by o n l y  two taps  on a de lay   l i ne .  

two-dimensional, and the  actua l  

isplayed. 
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Q 

The ou tpu t  was quant i  zed i n t o  5 1 eve1 s such t h a t  

Yo * -5 

Y1 = -3  

Y2 = - 1  

Y3 = 1 

Y q  = 3 

Y5 - 5 (20) 

L e t   t h e  axes o f   p a t t e r n  space  be designated  by  ml=.x(t),  m2=x(t-T). 

Then the   equat lons  for t h e   d i s c r i m i n a n t   l i n e s   a r e  

m2 = m - Yi, i - 1, 2, 3 ,  4, 1 (21 1 

S ince   t he   i npu t   x ( t )  i s  g a u s s i a n ,   t h e   d i s t r i b u t i o n   o f   p a t t e r n  

p o i n t s  Z = (ml,m2) i n   p a t t e r n  space i s   g i ven   by  a b ivar ia te   gauss ian  

d i s t r i b u t i o n .  The d i s t r i b u t i o n s   o f  m and m were  such t h a t  m and m 

have  zero mean and i d e n t i c a l e .  Hence, the   equ ip robab i l i s t i c   con tou rs  

1 2 1 2 

are  sketched in  the   pa t te rn   p lane  accord ing   to  

M1 - 2 p  M 1  M2 + M l =  0 
2 

F igu re  1 shows p a t t e r n  space for '   the  2-dimensional  delay  system,  with 

equiprobable  contours f o r 6  = 3, O-= 1 ,  and@= 2. 

F i r s t   o r d e r   n o n l   i n e a r  system 

The second  system  employed was termed  the f i r s t  o rder   non l inear  

system.  The block  d iagram i s  shown i n   F i g u r e   2 .  

1 
S S 
- 9 Y ( t )  

: 

Th reshol d 
Dev i ce 

F igu re  2 - F i r s t  Order  Nonl  inear  System 
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FIGURE 1 

Pattern  Space 
. 2-Dimensional  Delay  System 



The d i f fe ren t ia l   equat ion   fo r   the  system i s  

d t  (X - SGN (x - y) 

The so lu t i on   t o   t h i s   non l i nea r   d i f f e ren t i a l   equa t ion  can be found 

in  closed  form by separat ion  o f   var iab les  to  be 

Furthermore,  the  value o f  y(nT + T )  averaged over  the  interval 0 5 T I ,  T, 

t ha t   i s ,   t he   va lue   o f   y ( t )  averaged over  the  interval nT 6 t 5 (n-1) T, can 

a lso be found i n  closed form. 
1 - 

Y - Xn - T SGN ( x ' n  - y(nT))  log ( 1  + /x'n-y 

(24) 

The step response o f   t he  FONS i s  given i n   F i g u r e  3 .  

This system was employed because no numerical   integrat ion  is  

requ i red. 

Second Order  Nonlinear System . 

The t h i r d  system employed was a second order system w i t h  a saturat ion 

non l i nea r i t y .  The block  diagram i s  g iven   in   f igure  4. - 
Nonl i n  > 1 

s+ 1 > 
A 

Figure 4 - Second Order Saturat ion 
Sys  tem 

The non l i nea r i t y  employed for   s tud ies  o f   the  potent ia l   funct ion  A lgor i thm 

was a saturat ion,   g iven by: 

3 ,  u & 3  

f(u) = u, - 3 < u < 3  

-3, u.c( - 3 



FIGURE 3 
Step  Response o f  First  Order 
Nonlinear System """" 

0.0 1 .IO 2!0 3 .IO 4!0 5!0 6!0 7!O 8.lo 9!0 1 O!O 1 1 



Simula t ion   S tud ies  

In   pa r t i cu la r   t he   f o l l ow ing   p rob lems   a re   cons ide red :  

1.  Memory considerat ions:   the memory s i z e  i s  determined  by  the 

number o f  taps   on   the   de lay   l ine ,   the  number o f   q u a n t i z a t i o n   l e v e l s   f o r  

the   ou tpu t   s igna l ,  and the  maximum number o f   po les   per   ca tegory   ( tha t   i s ,  

t he  maximum number o f  elements i n   t h e  reduced  category  t ra in ing  sets) .  

Hence, i t  i s  necessary t o   i n v e s t i g a t e   c h o i c e   o f  number of  quan t i za t i on  

l e v e l s  and some method of l i m i t i n g   t h e  maximum number o f  po les   per   leve l .  

I t  i s ,   i n   g e n e r a l ,  assumed t h a t   t h e  number o f   t aps  and the   t ap   i n te rva l  

i s   f i x e d .  

2.  Choice o f  what i s  termed  " the  learn ing  rout ine" :   That   is ,  two 

methods o f   de termin ing   the   reduced  ca tegory   t ra in ing  sequences  were d i s -  

cussed.  These  were the  Maximum  Scheme and the  Absolute Scheme.  As has 

been pointed  out ,   the  reduced  category  t ra in ing sequences are   the   po les  

o f   t h e   p o t e n t i a l   f u n c t i o n ,  and these  two c r i t e r i a ,   i n   e f f e c t ,   d e f i n e  two 

d i s t i n c t   a l g o r i t h m s   f o r   c a l c u l a t i n g   t h e   p o l e s   o f   t h e   p o t e n t i a l   f u n c t i o n .  

Acco rd ing l y ,   i n   t he   d i scuss ion  to fo l low,   the  term  "Absolute  learn ing 

rou t  i ne" 

the  term 

i n g   t o  (I 

-3 . 
func t i on ,  

re fe rs   t o   se lec t i on   o f   po les   acco rd ing   t o   equa t ion   ( I s ) ,   wh i l e  

"Maximum lea rn ing   rou t i ne l l   r e fe rs  to  se lec t ion   o f   po les   accord-  

6) - 
Choice o f   t h e   p o t e n t i a l   f u n c t i o n ,  K(F, 7): Only  one p o t e n t i a l  

r e f e r r e d  to as the  I IBut terwor th  Potent ia l   Funct ion1 '  was 

employed. It i s  of t he  form: 
1 

P rac t i ca l   cons ide ra t i ons  

I n   t h i s   s e c t i o n   t h e  above  problems,  as  well   as  several  others,  are 

discussed i n  f u r t h e r   d e t a i l  and the  techniques Of s imu la t i on   a re  

descr i bed. 
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Memory Considerat ions 

In  a delay 1 ine  synthes izer ,   the  requi red number of taps  on 

the   de lay   l i ne ,  and t h e   t a p   i n t e r v a l   i s   g i v e n  by: 

NT = 2fm T + 1 

1 
T 2 2 f m  

where NT i s  the  number of   taps  requi red,  and T i s   t h e   t a p   i n t e r v a l .  

Then t h e   p a t t e r n   v e c t o r  will have N components, 
T 

- x = (x, ,"" 
P X N T  1 

Next  suppose t h e   o u t p u t   y ( t )  were t o  be  quant ized  in to  N l eve l s .  As 

has been discussed,  each  quant izat ion  level   corresponds  to a category 

L 

subse t   i n   pa t te rn  space. F i n a l l y ,  suppose t h a t  i t  i s  determined  that  

each  category  subset  shal l   contain no more  than N poles. Then i t  i s  

c l e a r   t h a t   t h e  computer  storage  required i s :  

max 

I n  add i t i on ,  an N X NHAX m a t r i x  [M] i s  requ i red  such tha t  d i K  " - 1  

depending upon whether  the kth p o l e   i n   t h e  ith category i s  p o s i t i v e   o r  

+ 
L 

nega t i ve .   I n  a general  purpose  computer,  the  matrix o( must  be s to red  

i n  NL ' NHAX words;  however, i f  a special  purpose  computer  were b u i l t   t o  

rea l i ze   t he   a lgo r i t hm,   s ince  d iK i s  a two-valued number, o n l y  N 

b i t s  would  be  required. 

c1 
L ' N~~~ 

I t  i s   n o t e d   t h a t   t h e  number n i s  a f a i r l y   l a r g e  number. For 
P 

example, i f  NT = 10, NL = 15, and NMAX = 50, then n s 7,500 words, 
P 

which,  though  not  unreasonable, i s   neve r the less   l a rge .  The dependence 

upon  these  values,  however, i s  l inear,   avoiding  the  problems  encountered 

by  several   other schemes. 
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The Maximum  Number o f  Poles  per  Category 

The p roo f  o f  the  convergence o f   t h e  Method o f   Po ten t i a l   Func t i ons  

shows t h a t   t h e r e   e x i s t s  an  upper  bound, ko, such tha t   t he  reduced 

t r a i n i n g  sequence conta ins   no t  more than k members, i n  terms o f  

p r o p e r t i e s  of the  category  subsets in  l i n e a r i z a t i o n  space. However, 

these  propert ies  are  not ,   in  general ,   measurable  or   calculable 2 

p r i o r i .   I n   s h o r t ,  i t  i s   n o t ,   i n   g e n e r a l ,   p o s s i b l e  to determine 5 

priori how  many poles  per   category w i  11 be  required;  therefore,  some 

a r b i t r a r y   l i m i t a t i o n  must  be placed  upon  computer  storage  by a r b i t r a r i l y  

s e l e c t i n g  N Now, choos i ng N i n  such a way as t o   r e s u l  t i n  

0 

MAX ' MAX 

reasonable  storage  requirements does not  guarantee  that   the a1 

terminated by the   t ime N po les  are  s tored,   which i s  t o  say 

i d e n t i f i c a t i o n   e r r o r  will no t   necessa r i l y  be acceptably  small .  

MAX 

g o r i  thm w i  11  have 

tha t   t he  

TO attempt  to  get   around  th is  problem,  c luster ing  techniques  were 

i n v e s t i g a t e d   i n   t h e   r e a l i z a t i o n   o f   t h e   A l g o r i t h m .  The techniques o f  

c l u s t e r i n g   i s  based  on  the  analogy o f   t h e  method o f   p o t e n t i a l   f u n c t i o n s  

t o   o t h e r  modal techn iques ,   descr ibed  in   the   l i te ra tu re .  

Desc r ip t i on   o f   Po le   We iqh t i nq  

Br ie f l y ,   the   c lus te r ing   techn ique  p roceeds as fo l lows:  suppose the 
i 

ith reduced  category  t ra in ing sequence S A a1 ready  contains N members, 

t h a t   i s ,  NMAX po les  have a l ready  been stored. Then another  pole 

appears  where k = NMAX+l. Then, ins tead  o f   add ing   the  new p o l e   t o   t h e  

S Q , ins tead,   the   c loses t   odd  po le   o f   the  same p o l a r i t y  is found and 

replaced wi th  a weighted  average of  i t s e l f  and the new pole. 

X 
MAX 

i 

That   is ,  suppose X were  the new pole,  where k > NMAX 
- i  and di = 21. 

i A i  
9 

The S2 would  be  searched f o r   t h e   p o l e  X 8 S 4 such t h a t  r( = A  ik and 

Min IlFL - 2 f 11. 
.i i j  

J 
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Then t h e   c l o s e s t   o l d   p o l e  X is.replaced  by  the  weighted  average o f  

i t s e l f  and the  new pole.   Symbol ica l ly :  

A i  
3 

where 

wo and wn 

and the c 

a r b i   t r a r i  

a re  two scalars  which  are  the  weights  by  which  the new po le  

l o s e s t   o l d   p o l e   a r e  averaged.  These  weights may be se lec ted  

l y  which i s  termed uni form  weiqht inq,  or they  nay  be  computed 

by   the   a lgor i thm  accord ing   to  some pre-se lec ted   ru le .  The r u l e  employed 

i n   t h e   s i m u l a t i o n  was s o - c a l l e d   c e n t e r   o f   q r a v i t y   w e i g h t i n q   r u l e .   I n   t h i s  

weight ing  procedure,   the  weights  are  selected so t h a t  i f  a p a r t i c u l a r   p o l e  

i s   t o  be mod i f ied  for the N th   t ime,   accord ing  to  (27), the  weights 

Wo and Wn a re   se t  such t h a t  

W 

wo 
Wn - Nw 
" 

For the  uni form  weight ing  procedure,   the  weights wo and wn are  pre-se lected 

and remain  constant. For t h e   c e n t e r   o f   g r a v i t y  (CG) procedure, a NL X N 

matrix[N (L,N)] i s  s to red  such t h a t  Nw (L,N) = 1 i n i t i a l l y  and i s  increased 

by  one  each  time  the Nth po le  o f   the  L th  category i s  weighted  according  to (27).  

MAX 

W 

Clear l y ,   t he  C.G. weighting  procedure  requ.ires more storage and more 

computation  than  does  the  uniform  procedure.  Simulat ion  studies  suggest 

t h a t   t h i s  added complex i ty  may no t  be j u s t i f i e d .  

Two special  cases o f   the   un i fo rm  p rocedure  may be  noted. 

1 .  Suppose w = 0, wn = 1. Thus, a new pole  s imply   rep laces  the 

neares t   o ld   po le .   Th is   m igh t  be o f  advantage f o r   n o n s t a t i o n a r y  systems 

where the  new po1.e i s   c o n s i d e r e d   t o  be  an  tlupdatel' of  the system. 

0 
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2. Supp0s.e w = 1, w = 0. Or ra ther ,  no ave rag ing   i s  done. 
0 n 

That   i s ,  once a c a t e g o r y   i s   " f i l l e d " ,  we assume we a r e   s a t i s f i e d   w i t h  i t ,  

and do no fu r the r   l ea rn ing .   Fo r  a s ta t i ona ry  system, t h i s   r e s u l t s   i n  

minimum computation. 

S imulat ion  s tud ies  suggest   that  i f  N i s  l a rge  enough, we igh t ing  
MAX 

does not  increase  s imulat ion  accuracy.  Hence, cases ( 1 )  or (2) may as 

w e l l  be selected, i f  appropr ia te .  

The Po ten t i a l   Func t i on  

The p o t e n t i a l   f u n c t i o n  employed r e f e r r e d   t o  as the  "But terwor th 

Potent ia l   Funct ionu1,  was o f   t he   f o rm  g i ven   i n  (25). Several   considerat ions 

l e d   t o   t h e   s e l e c t i o n   o f  a f u n c t i o n   o f   t h i s  form. F i r s t ,  i n t u i t i o n  suggest 

tha t   the   po ten t ia l   func t ion   shou ld   be  a monotone  decreasing  function  of 

11 x-y 1 1. T h i s   i s  because  each p o s i t i v e   p o l e  may be thought   o f  as 

e s t a b l i s h i n g  a "mode", and we d e s i r e   t h e   e x t e n t   o f   t h i s  mode be 1 imi ted.  

The parameters R and E d e f i n e   t h e   e x t e n t   o f   i n f l u e n c e   o f   t h e  mode def ined 

by  each p o s i t i v e   p o l e .  R determines  the  "ha l f -width"   o f   the  potent ia l  

w h i l e  E determines  the  steepness. 

Furthermore,  s ince  the  Butterworth  Funct ion i s  o f   g r e a t   g e n e r a l i t y  

w i t h   r e s p e c t   t o   t h e  "shape" o f   t h e   p o t e n t i a l   f u n c t i o n   i n   p a t t e r n  space, 

i t  was there fore   the   on ly  one  employed. 

Rea l i za t i on   o f   t he   A lgo r i t hm 

" Def-i-ni-Jion o f   t h e   D i s c r i m i n a n t   F u n c t i o n  

I n   t h e  Method o f  Poten t ia l   Func t ions   (F i rs t   A lgor i thm)   the   d isc r im inant  

f u n c t i o n   i n   p a t t e r n  space i s   d e f i n e d  by   the   se t   o f   pos i t i ve  and negat ive 

p o l e s   o f   t h e   p o t e n t i a l   f u n c t i o n .  As has  been shown, these  poles  are 

i d e n t i c a l l y   t h e  members of the  reduced  category  t ra in ing sequences. 
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SE, i = 1 ,---- . Le t  be the  nth member of %I. Then 2; i s  a 

p o s i t i v e  pol e, denoted  by & = +1, o r  X i s  a negat ive  pole,   denoted 

i 
NL 

44 
n n 

b y 4 q n  -1. 

Then t h e   p o t e n t i a l   f u n c t i o n   d i s c r i m i n a n t  i s  de f ined as fo l lows:  

Le t   the  number o f  l e v e l s  N and the maximum number o f   po les   pe r   ca tegory  L 

N~~~ 

N~~~ 

be  chosen. Then d e f i n e  an N x NMAX Vector   Mat r i x  P ,  and an N x 

sca la r   ma t r i x  x such tha t   the   vec tor  P (1,t-t) i s  the  nth member o f  

- 
L 

the at” reduced  category  t ra in ing sequence, P (9,n) = X n y  $ = I , - - - - ,  

NL; n = 1 D---- and&( (1,  n) & A= - 1 .  N o t e   t h a t   i s   i n   r e a l i t y  

a three-dimensional   scalar  array N x N x N A1 so de f ine  an in teger  

a r ray  N ( I ) ,  I = 1,”” ,N such t h a t   a t  each  step o f   t he   a lgo r i t hm,  NN(R) 

i s  the number o f   p o l e s   a l r e a d y   i n   t h e  Ith reduced  category  t ra in ing 

- h9, 

+ 
9 N ~ ~ ~ 9  

T L MAX’ 

N L 

sequence.  Then, a t  each p o i n t   o f   t h e   l e a r n i n g  phase o f   t he   a lgo r i t hm,  

the NL d i sc r im inan t   f unc t i ons   a re   de f i ned  by: 

NJ1) 

n= l  

P rocedu  re 

Then a t   the   k th   s tep   o f   the   a lgor i thm,   the   pa t te rn  S i s  examined X 

according to (15) or  (16),  and i f  an e r r o r  i s  found,  then  ei ther 

a .  i f  the   appropr ia te  N (9) 4 NMAX, t h e   p a t t e r n  5? i s  added t o   t h e  N 

ar ray  F, the  va lue N ( f )  i s  increased  by.one, and d ( f , N N ( $ ) )  i s  s e t   t o   t h e  

appropr ia te  va lue;  or 

b .  i f  NN (j) = NMAXy the   pa t te rn  7 i s   w e i g h t e d   w i t h   t h e   c l o s e s t   o l d  

po le   o f   t he  same p o l a r i t y ,   a c c o r d i n g   t o  (27 ) .  

During  the  learning  phase  patterns  are examined acco rd ing   t o   e i t he r  

the Maximum o r  Abso lu te   learn ing  scheme, and may be added to   s torage  accord ing 

. Per iod i ca l l y ,   t he   a lgo r i t hm  b ranches   t o   t he   i den t i f i ca t i on  

i c h  a standard specimen s i g n a l   i s   i d e n t i f i e d , .  The i d e n t i -  

i f f e r s  f rom  the  learn ing phase in   t he   f o l l ow ing   respec ts :  

t o  the  procedure 

phase, dur ing  wh 

f i c a t i o n  phase d 
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a.  Regardless o f   t h e   l e a r n i n g   r o u t i n e ,   i d e n t i  

made w i t h  a maximum c r i t e r i o n .   T h i s  i s  permiss ib le  

se t   o f   ca tegor ies   wh ich  i s  maximally  separable i s  a1 

separable.  Furthermore,  since  maximal  separabi 1 i t y  

f i c a t i o n   i s  

s ince any 

so abso lu te ly  

i s  a weaker 

cond i t ion ,  fewer   equivocal   c lass i f icat ions  would be made ( t h a t   i s ,  

c l a s s i f i c a t i o n s  where  more  than  one, o r  none o f  the N d iscr im inant  

f u n c t i o n s   a r e   p o s i t i v e ) .  

L 

b.   Dur ing  the  learn ing phase, t h e   i d e n t i f i c a t i o n   e r r o r  (R M S )  

and r e l i a b i l i t y   a r e  measured. Each t ime  the specimen s igna l   i s   tes ted ,  

t h e   r e a l i z a t i o n   r e t u r n s   t h r e e   q u a n t i t i e s :   t h e  RMS e r r o r   o f   t h e   s p e c i -  

men s i g n a l ,   t h e   r a t i o   o f   c o r r e c t   i d e n t i f i c a t i o n s ,  and t h e   r a t i o   o f  

i d e n t i f i c a t i o n s   c o r r e c t   t o   w i t h i n  one quan t i za t i on  interva.1.. 

c .   D u r i n g   t h e   i d e n t i f i c a t i o n  phase, p a t t e r n s   i n c o r r e c t l y  

c l a s s i f i e d   a r e   n o t  added to   s to rage.  

I t  i s  assumed tha t   t he  Specimen s igna l  i s  r e p r e s e n t a t i v e   o f  

the   learn ing   s igna l ,   hav ing   the  same s t a t i s t i c s ,   b u t   t h a t   t h e  specimen 

s igna l  i s  n o t   i d e n t i c a l   t o  any segment o f   t he   l ea rn ing   s igna l .  

Experimental  Results 

The purpose o f  the  experiments i s  two-fold: f i r s t  t o   v e r i f y  

t ha t   t he  method o f   p o t e n t i a l   f u n c t i o n s   i s   u s e f u l  as a method o f  

adap t i ve   s imu la t i on  o f  non- l inear  systems;  second t o   p r o v i d e  some 

i n s i g h t   i n   t h e   c h o i c e   o f   p a r a m e t e r s .  

The pa ramete rs   o f   i n te res t   a re   t he  number quan t i za t i on   l eve l s  

o f   t h e   o u t p u t ,   t h e  number o f   p a s t  samples o f   t h e   i n p u t ,   t h e  maximum 

number o f   po les   pe r   ca tegory ,   t he   po le   we igh t i ng   f ac to rs ,  and the 

po ten t i a l   f ac to r   pa ramete rs  R and E. Also of i n t e r e s t   i s  some 

comparison  between  the Maximum and Absolute  learn ing  rout ines.  

1 be  examined w i th   respec t   to   the  

1, i n   the   p resent   case p and 6 ( i n  a1 1 

F i  na 

s t a t  

l l y ,  these  fac to rs   a re   to  

i s t i c s   o f   t h e   i n p u t   s i g n a  
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cases,  input  of  mean va lue = 0 were  used) 

Two-Dimensional  Delay  System 

Choice o f   Learn inq   A lqor i thm.  

Comparison of f i g u r e s  5 and 8 f o r   t h e  maximum r o u t i n e   w i t h  

f i gu res  9 and 10 fo r   t he   abso lu te   rou t i ne   i nd i ca te   t ha t   ne i the r  i s  

marked ly   be t te r   than  the   o ther ,   w i th  one reservat ion:   That  i s ,  i n  

f i gu re  9 ,  there  i s  a reg ion computed as category 1 t h a t  i s  a c t u a l l y  

category 4. This  would be a more se r ious   e r ro r   t han   be ing  m i s -  

c l a s s i f i e d  as category 3 .  

Table 1 i nd i ca tes   t ha t   bo th   requ i re  a comparable number o f  

poles. The d i f f e rences  between  the two may be 1 )  tha t   the  maximum 

r o u t i n e   i s  somwhat more accurate  than  the  absolute one; 2) t ha t   t he  

abso lu te   rou t ine  may requ i re  a somewhat longer   learn ing  t ime,  or 3 )  

f o r t u i t o u s .   I n  any  case,  the  d i f ference i s  no t  marked. 

E f f e c t  o f  Radius R. 

Comparison o f   t h e  cases f o r  R = 1 and R = 4 ind i ca tes   t ha t   t he  

radius  parameter i s  indeed an extremely  important  one.  Note  that   in 

comparing  f igures 5 w i t h  7, and, f i gu res  9 w i t h  10, t ha t   t he   l a rge r  

r a d i u s   r e s u l t s   i n  a h igher   po le   dens i ty ,   Th is  i s  the   reverse   o f  what 

would  be  t rue  for   o ther  modal schemes. No te   t ha t   i n   t he   reg ion   o f  

in te res t ,   accuracy   i s   worse   fo r   the   la rger  R.  

T h i s  i s   e x p l a i n e d   b y   t h e   f a c t   t h a t   t h e   r e g i o n   o f   i n f l u e n c e   o f  

a po le  i s  l a r g e r   f o r   l a r g e r   r a d i u s .  Hence p o l e s ,   i n   e f f e c t ,  "swamp1' 

each o ther   ou t .  It appears  that   the  radius  should be  chosen SO tha t  

t he   po le  does n o t   e x t e n d   i t s   i n f l u e n c e   t o o   f a r  beyond the  boundaries 

of  i t s  own region.  



Convergence. 

Only  the  boundar ies,   not   the  actual   pole  locat ions,   are shown 

i n   f i g u r e s  6 and 8 ,  t h e   p l o t s   f o r  200 passes.  For R = 1 ,  comparison 

of 5 and 6 ind icate  that   the  boundar ies  are  converg ing  n ice ly .   Note 

t a b l e  1 i n d i c a t e s   t h a t  27 p o l e s   w e r e   s t o r e d   i n   t h e   f i r s t   h u n d r e d  passes, 

w h i l e   o n l y  12 were   s to red   in   the  second  hundreo. The boundaries i n  

t h e   r e g i o n   o f   i n t e r e s t   a r e   c l e a r l y   b e t t e r   f o r  200  passes. 

Not near ly   as good i s  the  case f o r  R=4. There  appears to  be 

sane  convergence, s ince   here  37 poles  were added i n   t h e   f i r s t  hundred 

passes,  whi l e   o n l y  20 i n  the  second  hundred. However, the  boundaries 

a re   no t   app rec iab l y   be t te r .   Fu r the rmore ,   no te   t ha t   i n   f i gu re  8, the 

computed - A boundary  has moved i n  toward   the   h igh   p robab i l i t y  

region; many l o w   p r o b a b i l i t y   p o i n t s  would  be  required to get  i t  back 

out  again.  

Conclusions 

The above r e s u l t s  can  be summarized as a t e n t a t i v e   e v a l u a t i o n  

of  t h e   e f f e c t s   o f   t h e s e   f a c t o r s  upon the   a lgor i thm.  

Learn inq  rout ine:   not   markedly   impor tant .  Maximum r o u t i n e  

perhaps sl i g h t l y   b e t t e r .  

I n p u t   S t a t i s t i c s :   a l l o w i n g   f o r   t h e   f a c t   t h a t  sma 

i n  a s m a l l e r   r e g i o n   o f   i n t e r e s t ,   t h e   a l g o r i t h m  seems t o  

cases  equal ly   as  wel l .  

1 l e r   r e s u l  t s  

handle a1 1 

Convergence: sa t is fac to ry ,   fo r   p roper   cho ice   o f   parameters .  

Radius:  extremely  important.  Should  be  chosen to be  smal ler   than 

the   "s ize"   o f   the   ca tegory   se t .  

More Compl i ca ted  Systems 

Learn i ng  Rout i ne 

There seems t o  be  no  systematic  relat ionship  between Wo and 

s imulat ion  accuracy.  The C.G. scheme seems to have no c l e a r  advantage 

over   the  un i form scheme. 
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One rese rva t i on  may be ind ica ted .  These r e s u l t s   a r e   f o r  N 
MAX = 50. 

The upward  trend o f  the   cu rves   a f te r   sa tu ra t i on  has  been  reached may 

i n d i c a t e   t h a t   t h e   a l g o r i t h m  has done as wel l   as i t  can  for   that  form. 

I t  is   there fore   conc luded  tha t   there   i s   no  marked  advantage o f  

one  over   the  o ther .  Fewer c a l c u l a t i o n s  may be   requ i red   fo r   the  maximum 

rou t i ne ,   wh i l e  on the   o the r  hand, t h i s   r o u t i n e   r e q u i r e s  a maximum 

se lec to r ,   wh i l e   t he   abso lu te   rou t i ne  may be rea l ized  wi th   TLU's .  

I t  i s  assumed t h a t   i n  a specif ic  problem,  these and re la ted  cons idera-  

t i ons   cou ld  be made t h e   c r i t e r i o n   o f   w h i c h   t o   s e l e c t .  

Conclusions 

In  the  study  of   the  two-dimensional   delay  system, i t  was 

surmised  tha t   the   rad ius   fac to r  R must be chosen t o  be smal ler   than 

the   smal les t   "s ize1 '   o f  a category  set ;  and that  choosing R l a r g e r  

than   t h i s   s i ze  will degrade  est imation, whereas  choosing i t  smal ler  

will not  appreciably  improve i t ,  This  seems t o  be  supported  by  the 

da ta   o f   t he  more complicated  systems. We note   a lso ,   tha t   the  1 

var iance  o f   the   inpu t ,   the  1 ess  sensi t i v e  i s  the  accuracy  to  R 

Presumably t h i s   i s  because l a r g e r   v a r i a n c e   r e s u l t s   i n  a probab 

o f   e r ro rs   be ing   co r rec ted .  

i 

a rge 

1 i t y  

The steepness E i s  a l s o  a f a c t o r   t o  be considered.  Presumably, 

f o r  R s u f f i c i e n t l y   s m a l l ,  E would  not be an important  parameter, 

whereas l a r g e r  R may be p a r t i a l l y  compensated  by l a rge  E,, i .e., 

steeper  decrease of  K(T y) w i t h  11 y-7 11. 
The E f f e c t   o f  NHAX 

. F igures 1 1  and 12 i n d i c a t e   t h e   e f f e c t s   o f  

number of   poles  per  category,  NMAX. Clear l y ,  30 

increas ing  the maximum 

1 ,  40 and 50 poles 

prov ide  bet ter   accuracy  than 20 poles,   but  50 poles does not  represent 

a marked  improvement over N = 40 poles.   Learning  curves  are  pre- 

s e n t e d   i n   f i g u r e  1 1 ,  and RMSE i s  p l o t t e d   a g a i n s t  NMAX in 12. 

MAX 

r 
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I 

1 t i s  assumed tha t   i nc reas ing  N will u l t i m a t e l y  reduce  the MAX 

e r r o r ;  however, i t  i s  seen tha t   t he   ra te   o f   reduc t i on  tends to  decrease. 

The e r r o r  due to averaging and quant iz ing,   denoted  by RMSAQ, i s   i n d i c a t e d  

on f i g u r e  1 1 .  T h i s   i s  a lower bound on i d e n t i f i c a t i o n   e r r o r ,   s i n c e  even 

i f  t h e   i d e n t i f i e r  were t o   c l a s s i f y   p a t t e r n s   c o r r e c t l y  lOoO/o of the  t ime, 

t h e   e r r o r   w o u l d   s t i l l  be  equal t o  RMSAQ. 

E f f e c t   o f   F i n e   Q u a n t i z a t i o n  

Resul t s  

The  second o rde r  system, t e s t   s i g n a l  6 ,  was used t o  measure the  

e f f e c t   o f   f i n e  and c o a r s e   q u a n t i z a t i o n   o n   t h e   a l g o r i t h m ' s   a b i l i t y   t o  

s imulate  the  system. For re ference  the minimum e r r o r  due to averaging 

and quant izat ion  are  repeated  here from t a b l e  2. 

Parameter  values  were: 

P =  .o. 5 

6 - 0.5 - 

NMAX = 50 

NTAP = 1 0' 

The abso lu te   l ea rn ing   rou t i ne ,  CG weight ing was employed. 

The v a l u e s   o f  RMSAQ f rom  tab le 2 f o r  deck 6 were  as fo l lows:  

- NL - RMSAQ 

5 .lo49 

15 .0474 

25  .0339 

35 .0319 

The co r rec ted  RMS E r r o r , w a s   a r b i t r a r i l y   d e f i n e d  as: 

RMSE - RMSAQ, 
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t h a t   i s ,  how c lose   t he   ac tua l  RMSE came to   t he   l ower  bound. Learning 

cu rves   f o r  5, 15, 25,  and 35 l e v e l s ,   p l o t t i n g   c o r r e c t e d  RMS e r r o r  i s  

shown i n   f i g u r e  13. Note  that   the  corrected RMSE increases  ra ther  

than  decreases  for   increas ing NL. Uncorrected  data  are  not   presented, 

bu t  can e a s i l y  be i n fe r red   f rom  f i gu re  13 and the  above tab le .  The 

face i s ,  t h a t   i n   a l l  cases,  the  uncorrected  curves  were  close  together. 

T h i s   r e s u l t  i s  no t  as s u r p r i s i n g  as i t  might  f i r s t  appear. 

F igure  14 g i v e s   d a t a   o n   t h e   r a t i o   o f   c o r r e c t   c l a s s i f i c a t i o n s   f o r   t h e  

severa l   va lues   o f  N L .  That i s ,  t h e   r a t i o   o f   c o r r e c t   e s t i m a t e  i s  t ha t  

f r a c t i o n   o f   p a t t e r n s   p r e s e n t e d   b y '   t h e   t e s t  deck t h a t  were c o r r e c t l y  

c lass i f i ed .   C lea r l y ,   t he   f ewer   l eve l s   t he re   a re ,   t he  more r e l i a b l e  

will be the   es t imat ion .  

One rese rva t i on  must be noted. As the number o f   l e v e l s  i s  

i n c r e a s e d ,   t h e   e x t e n t p f  each category  set  i s  decreased. Hence, the 

r a d i u s   f a c t o r  R should be decreased  accordingly. The curves  of  

f i g u r e s  13 and 14 were a l l   f o r  R = 1 ,  which i s   p r o b a b l y   f a r  from 

optlmum f o r  25 and 35 l eve l s .  More s t u d i e s   o f   t h i s   p o i n t   w o u l d  

probably  be he1 p f u l  . 
Conclusions 

The main  conclusion i s  t h a t  i t  i s  by  no means c lear   tha t   iden-  

t i f i c a t i o n   e r r o r  can  be  reduced  by  simply  increasing  the  f ineness 

o f   quan t i za t i on .   Th i s   i s   p robab ly   t rue   i n   genera l  for the  method 

o f   po ten t i a l   f unc t i ons ,   as   we l l  as f o r  most o t h e r  modal l ea rn ing  

techniques.  Furthermore, a s i m i l a r  mechanism may be p r e s e n t   i n   o t h e r  

types o f  1 earn ing a1 g o r i  thms as we1 1 .  

p robab ly ,   the   compl ica t ion   in t roduced  by   f iner   quant iza t ion  

can  be mi t iga ted   by   op t im iz ing   the   Rad ius  and Steepness fac to rs ;  

however, i t  i s   n o t   c l e a n   t h a t   t h i s  will provide  the  whole answer. 
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Conclusions 

The Experimental  Results 

The r e s u l t s   i n d i c a t e   t h a t   t h e  most important  parameters o f   t h e  

a lgo r i t hm  a re   t he   rad ius  and steepness  factors R and E, the number o f  

q u a n t i z a t i o n   l e v l e s  NL, and the maximum  number o f   po les   pe r   ca tegory  

NMAX. The l a s t  two are  impor tant   a lso  in   that   they  determine  the 

amount o f   s to rage   requ i red  f o r  rea l i z i ng   t he   a lgo r i t hm.  These 4 

fac to rs   a re   fu r thermore   c lose ly   re la ted .  For example, increas ing N 

probably  requ i res a change i n  R and E. I t i s noted  that   increas ing 

N, i s   p r o b a b l y  a l e s s   e f f e c t i v e  means o f  improving  accuracy  than i s  

L 

I. 

i ncreas i ng N 
MAX. 

The r e s u l t s   i n d i c a t e   t h a t  a 

l ea rn ing   rou t i ne  i s  not   important 

quirements,  nor i s  c h o i c e   o f  a PO 

may be  chosen t o   s a t i s f y   o t h e r   c r  

Choice o f  Tap i n t e r v a l ,  and 

cho ice   o f   the  abso 

to  the  accuracy o r  

' l u t e  or  maximum 

' the  storage  re- 

l e   w e i g h t i n g  scheme, Hence, these 

i t e r i a ,  such as hardware simp1 i c i t y .  

se t t l ing   t ime  a re   impor tan t ,   bu t  

a r e   p r o p e r t i e s   o f   t h e  system, ra ther   than  o f   the  a lgor i thm.  

Funct ion  S imulator  for a Given System. 

I n   l i g h t   o f   t h e  above, the  important  Steps  in  designing an 

adapt ive   s imu la to r   employ ing   the   po ten t ia l   func t ion   a lgor i thm  a re  

fo l lows:  

1 .  N i s  chosen  as the  smal lest  number such that  the  quant 

e r r o r   i s   s a , t i s f a c t o r i l y   s m a l l .   D i s c u s s i o n s   o f  Max ( 9 )  and o f  Wid 

(14) migh t   p rov ide  a c r i t e r i o n .  

L 

as 

i za t   ion  

row (131, 

2.  The number of   taps and t h e   s e t t l   i n g   t i m e   i s  chosen according 

to what  knowledge  about  the  input i s  ava i lab le .  

3. R and E a r e  chosen. R should be  small enough as  discussed 

above,  and i n  general i s  a f u n c t i o n   o f  NL. A f i r s t  apptoximation 
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might  be  as fo l lows:  

The "volume'' o f  a hypersphere i n  d-dimensional  space i s  g iven 

by (7) * 

Hence, i f  i t  i s  known tha t   t he  volume of  sample  space,  as 

determined by the   va r iance   o f   t he   i npu t  i s  vl( then R i s  chosen  such 

t h a t  

i n   o t h e r  words, t o  a f i r s t  approximation, i t  i s  assumed t h a t  each 

category  subset  occupies an  equal  volume i n   p a t t e r n  space. 

4. NMAX i s  chosen t o  be the   l a rges t  number f o r   f e a s i b l e  memory 

requ i remen t s  , 

5. The o ther   parameters   a re   chosen  to   su i t   whatever   c r i te r ia  

a re   appropr ia te .  

Sugqestions  for  Further  Research 

Two top ics   migh t  be appropr ia te  f o r  fur ther   s tudy.  The r e l a t i o n -  

sh ip  between R and N L  might  be inves t iga ted ,  and t h e   e f f e c t  upon  iden- 

t i  f i c a t   i o n  

of  po le  we 

F ina  

o f   i n c r e a s i n g  N w h i l e   o p t i m i z i n g  R. A lso   inves t iga t ions  
L 

i g h t i n g   f o r   s m a l l e r   v a l u e s   o f  NMAX may be o f   i n t e r e s t .  

l l y ,   i t . i s   n o t e d   t h a t   t h e   a l g o r i t h m   d e s c r i b e d   h e r e  i s  the 

bas ic   a lgor i thm,   p resented   in   the  f i r s t  paper o f  Aizerman e t   a l .  The 

two  subsequent  papers  d iscuss  several   var iat ions,   including a p r o b a b l i s t i c  

technique  which  should  be  h igh ly   appropr ia te  for   adapt ive  s imulat ion.  
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FIGURE 5 - Two-Dimensional  Delay System 
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F I G U R E  9 - Two-Dimensional  Delay  System 
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FIGURE 13 - Learning  Curve Second Order  System 
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